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Abstract 
 

The measurement of 21 rigid body errors is very difficult and time 
consuming.  The introduction of B5.54 and ISO230-6 machine tool performance 
measurement standards are increasing the popularity of laser interferometer 
diagonal displacement measurement for the calibration of machine tool 
positioning errors.  To establish the theoretical foundation of the 4 body 
diagonal displacement measurement, it is important to derive the relations of the 
21 rigid body errors and the measured 4 body diagonal displacement errors. 

To derive these relations, there are three different approaches.  One is 
manually calculate the 3rd order vector and rotation matrices, the 2nd is using the 
MathLab program to calculate the 4th order translation and rotation matrices and 
the third is using a stacking model and Abbe offsets to determine the angular 
error terms.  Using these three approaches, the formulae for the 4 body diagonal 
displacement errors in 4 machine configurations, FXYZ, XFYZ, XYFZ, and 
XYZ have been derived.  As expected, the results derived by all three 
approaches are the same.  The results show that for the XFYZ and XYFZ 
configurations most of the angular errors are cancelled and only 2 angular error 
terms are left in the body diagonal displacement measurement.   
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1. Introduction 
 
The worldwide competition and quality standards, such as ISO 9000 and QS 
9000, all demand tighter tolerance and regular maintenance of all machine tools.  
To generate good quality or accurate parts, the measurement of 3 dimensional 
volumetric positioning accuracy of a machine tool is critical.  The introduction 
of B5.54 [1] and ISO230-6 [2] machine tool performance measurement standards 
are increasing the popularity of laser interferometer diagonal, sequential step 
diagonal or vector technique[3] for the calibration and compensation of machine 
tool errors.   

Using a conventional laser interferometer to measure the straightness and 
squareness errors is rather difficult and costly.  It usually takes days of machine 
down time and experienced operator to perform these measurements.  For those 
reasons the body diagonal displacement error defined in the ASME B5.54 or 
ISO 230-6 standard is a good quick check of the volumetric error. Furthermore, 
it has been used by Boeing Aircraft Company and many others for many years 
with very good results and success.   However, it is not clear, what is the relation 
between the body diagonal displacement errors and the 3D positioning errors.  
 
2. Positioning errors of  3-axis machines and machine 

configurations  
 
For a 3-axis machine, there are 6 errors per axis or a total of 18 errors plus 3 
squareness errors.  These 21 rigid body errors [4] can be expressed as the 
following. 
Linear displacement errors: δx(x), δy(y) and δz(z) 
Vertical straightness errors: δy(x), δx(y) and δx(z) 
Horizontal straightness errors: δz(x), δz(y) and δy(z) 
Roll angular errors: εx(x), εy(y) and εz(z) 
Pitch angular errors: εy(x), εx(y) and εx(z) 
Yaw angular errors: εz(x), εz(y) and εy(z) 
Squareness errors: Sxy, Syz, Szx 
where, x, y, z are the coordinates, δ is the linear error, subscript is the error 
direction and the position coordinate is inside the parenthesis, ε is the angular 
error, subscript is the axis of rotation and the position coordinate is inside the 
parenthesis.  
      In most cases coordinate measuring machines and machine tools can be 
classified into four configurations[5]. They are the FXYZ, XFYZ, XYFZ, and 
XYZF as shown in Figures 1, 2, 3, and 4 respectively.   Here, the axis before F 
show available motion directions of the work piece with respect to the base, and 
the letters after F show the available motion directions of the tool (or probe) 
with respect to the base.  For example, in FXYZ the work piece is fixed, and in 
XYZF the tool is fixed. 

                       
 
 



 3

 
 
 
3.  Position vector and rotation matrix  
 
The vector positions of each stage, X, Y and Z can be expressed as column 
vectors,  
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Fig. 1,  Schematic of FXYZ Fig. 2  Schematic of XFYZ 

Fig. 3,  Schematic of XYFZ Fig. 4,  Schematic of XYZF 
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To simplify the calculation, the squareness errors can be included in the 
straightness errors by define the new straightness error as the sum of the old 
straightness errors and the squareness errors as shown below.  
        δx(y) =δx(y) (old) + Sxy * y    
        δx(z) =δx(z) (old) + Szx * z                                                                    (4) 
        δy(z) =δy(z) (old) + Syz * z 
To simplify the calculation, neglect the tool offset. 
The angular error rotation matrix can be expressed as, 
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where u = x, y or z. 
      Please note εu(u) is much smaller than 1 and also an odd function of u, hence  
R(u) I = I R(u), and R(-u) = R-1(u), where I is a unit matrix and R-1 is the 
inverse matrix of  R.  
 
4. 3rd order vectors and rotation matrices calculation 
 
If the positions of the X, Y, and Z stages are represented by the vectors X, Y, 
and Z respectively.  The angular errors of the X, Y, and Z stages are represented 
by the rotation matrices R(x), R(y), and R(z). The actual positions with respect 
to the work piece or machine coordinate can be represented by the vector P. As 
shown in [5], the actual position vector P for the 4 configurations can be 
expressed in a machine coordinate as the followings. 
 

For FXYZ:    P = X + R-1(x)Y + R-1(x)R-1(y)Z                                                (6) 

For XFYZ:    P = R-1(x)X + R-1(x)Y + R-1(x) R-1(y)Z                                     (7) 

For XYFZ:    P = R-1(y) R-1(x)X + R-1(y)Y + R-1(y) R-1(x)Z                           (8) 

For XYZF:    P = R-1(z) R-1(y) R-1(x)X+R-1(z) R-1(y)Y+R-1(z)Z                     (9) 

The actual tool tip position can be expressed as a column vector, 
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For  FXYZ configuration, Eqn. (6) becomes  
Px- x = [δx (x) – y*εz(x)+ z*εy(x)] + [δx (y)  + z*εy(y)] + [δx (z)] 
Py- y = [δy (x) – z*εx(x)] + [δy (y)  - z*εx(y)] + [δy (z)]                               (11) 
Pz- z = [δz (x) + y*εx(x)] + [δz (y)] + [δz (z)] 

Similarly for  XFYZ configuration, Eqn. (7) becomes 
Px- x = [δx (x) – y*εz(x)+ z*εy(x)] + [δx (y)  + z*εy(y)] + [δx (z)] 
Py- y = [δy (x)+ x*εz(x)-z*εx(x)] + [δy (y)  - z*εx(y)] + [δy (z)]                  (12) 
Pz- z = [δz (x) -x*εy(x)+y*εx(x)] + [δz (y)] + [δz (z)]         

Similarly for XYFZ configuration, Eqn (8) becomes 
Px- x = [δx (x) +z*εy(x)] + [δx (y) -y*εz(y)+z*εy(y)] + [δx (z)] 
Py- y = [δy (x)+ x*εz(x)-z*εx(x)] + [δy (y) +x*εz(y) - z*εx(y)] + [δy (z)]     (13) 
Pz- z = [δz (x) -x*εy(x)] + [δz (y)- x*εy(y)+ y*εx(y)] + [δz (z)]      

Finally for XYZF configuration, Eqn. (9) becomes,  
Px- x = [δx (x)]+ [δx (y) -y*εz(y)] + [δx (z)- y*εz(z)+ z*εy(z)] 
Py- y = [δy (x)+ x*εz(x)] + [δy (y) +x*εz(y)] + [δy (z)+ x*εz(z)-z*εx(z)]       (14) 
Pz- z = [δz (x) -x*εy(x)] + [δz (y)- x*εy(y)+ y*εx(y)] + [δz (z)-x*εy(z)+ y*εx(z)] 

The tool offset errors are the same for all 4 configurations. 
            
5. Forth order transformation matrices calculation 
 

The second approach is using the forth order transformation matrices 
formulation and the MathLab program [6].  
    For FXYZ configuration machine, setup coordinate systems X、Y、Z for X、
Y、Z Stage respectively, coordinate system τ for tool tip and  p for workpiece. 
Finally setup a reference system R at the machine bed, and assume the origins of 
the coordinate systems coincide at the same point before running.  Under ideal 
conditions(all the errors are zero), the homogeneous coordinate transformation 
matrices can be expressed as:  
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So in ideal case, the transformation matrices between coordinate systems τ and  p can be 
expressed as:  

i i i i i i i i i

1 0 0
0 1 0T T T T ( T T T T T ) 0 0 1
0 0 0 1

X
R

R R Y Z
p p pR X Y Z Z

x
y
z

τ τ τ τ
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⎢ ⎥⎣ ⎦

             (16) 

where the superscript i represents the ideal condition. 

      Under error condition, there are three translational and three rotational error 
components for X 、Y、Z stage, using rigid body kinematics with small errors 
approximation and homogeneous coordinate transformation, the homogeneous 
coordinate transformation matrices can obtained as: 
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where the superscript e represents the error case and I is a unit matrix. 

Hence under the error case, the transformation matrices between coordinate 
systems τ and  p can be expressed as: 

e e e e e e e e eT T T T ( T T T T T )R R X Y Z
p p R p R X Y Z Z
τ τ τ τ= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅                       (18) 

          e i
p p p
τ τ τ= ⋅T E T                                                                              (19) 

where error matrix p
τ E  between  coordinate systems τ and  p can be expressed 

as  
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where xη , yη and zη are the position errors , xγ , yγ and zγ are the angular 

errors. Using the MathLab program, substituting Eqns.(16),(17) and (18) into 
Eqn.(19)，we can obtain the position errors of the FXYZ configuration as the 
followings.  

ηx = [δx (x) – y*εz(x)+ z*εy(x)] + [δx (y)  + z*εy(y)] + [δx (z)] 
ηy = [δy (x) – z*εx(x)] + [δy (y)  - z*εx(y)] + [δy (z)]                            (21) 
ηz = [δz (x) + y*εx(x)] + [δz (y)] + [δz (z)] 

Eqn.(21) is the same as Eqn.(11). 

Similarly, the error matrix p
τ E  can be obtained for the configuration 

XFYZ, XYFZ and XYZF, and the position errors can be calculated by the 
MathLab program.  The results are the same as Eqns. 12, 13, and 14 
respectively. 

 
6.  Stacking model and Abbe offset 
 
The displacement errors caused by the pitch, yaw and roll angular errors are the 
Abbe offset times the angular errors.  The sign is determined by the right-hand-
rule. 
      For the configuration FXYZ (Fig. 1), x-axis is mounted on a fixed base, y-
axis is mounted on the x-axis and z-axis is mounted on the y-axis.  Hence for x-
axis movement, there is no Abbe offset on x and the angular error terms are 
y*εx(x), y*εz(x), - z*εx(x) and  z*εy(x); for y-axis movement, there are no Abbe 
offset on x and y and the angular error terms are  -z*εx(y) and z*εy(y);  for z-axis 
movement, there are no Abbe offsets on x, y and z and there is no angular error 
term.  This result is the same as Eqn. (11).  

Similarly for the configuration XFYZ (Fig. 2), x-axis is mounted on a fixed 
base, y-axis is mounted on the x-axis and z-axis is mounted on the y-axis.  
Hence for x-axis movement, there are all 3 Abbe offsets and the angular error 
terms are - x*εy(x), x*εz(x), y*εx(x), - y*εz(x), - z*εx(x) and  z*εy(x); for y-axis 
movement, there are no Abbe offsets on x and y and the angular error terms are -
z*εx(y) and z*εy(y); for z-axis movement, there are no Abbe offsets on x, y and z 
and there is no angular error term.  This result is the same as Eqn. (12). 

Similarly for the configuration XYFZ (Fig. 3), x-axis is mounted on a fixed 
base, y-axis is mounted on the x-axis and z-axis is mounted on a fixed base.  
Hence for x-axis movement, there is no Abbe offset on y and the angular error 
terms are - x*εy(x), x*εz(x), - z*εx(x) and  z*εy(x); for y-axis movement, there are 
all 3 Abbe offsets, and the angular terms are x*εy(y), x*εz(y), y*εx(y), - y*εz(y), -
z*εx(y) and z*εy(y); for z-axis movement, there is no Abbe offset on x, y and z 
and no angular term. This result is the same as Eqn. (13). 
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Finally for the configuration XYZF (Fig. 4), x-axis is mounted on a fixed 
base, y-axis is mounted on the x-axis and z-axis is mounted on the y-axis and the 
spindle is fixed.  Hence for x-axis movement, there are no Abbe offsets on x and 
y and the angular error terms are - z*εx(x), and  z*εy(x); for y-axis movement, 
there is no Abbe offset on z, and the angular error terms are - x*εy(y), x*εz(y), 
y*εx(y), - y*εz(y); for z-axis movement, there are all 3 Abbe offsets and the 
angular error terms are - x*εy(z), x*εz(z), y*εx(z),  - y*εz(z), - z*εx(z) and z*εy(z).  
The results are the same as Eqn. (14). 
 
7.  Formulae for the 4 body diagonal displacement errors 
 
 
 
 
 
 
 
Figure 5:  Shows the 4 body diagonal                   Figure 6: Shows the laser                
                 directions.                                                         beam direction and   
                                                                                           the retroreflector. 
 
 
 

For the 4 body diagonal displacement measurement [1, 2], the measurement 
directions are ag. bh, ce, and df, as shown in Figure 5.  The measurement is 
performed with the laser pointing along the body diagonal direction and the 
retroreflector moving along the body diagonal with a fixed increment as shown 
in Figure 6.  For the configuration FXYZ, using Eqn. (11), the measured error 
DR at each increment can be expressed as:    

 
DRppp = a/r *δx(x) + b/r *δy(x) + c/r *δz(x)                                              
                + a/r*[δx(y) +y Sxy] + b/r*δy(y) + c/r*δz(y)  
                + a/r*[δx(z) +z Szx]+ b/r*[δy(z) + z Syz]+ c/r *δz(z)                      (22)  
                +εy(x) *ac/r –εz(x) *ab/r +εy(y) *ac/r –εx(y) *bc/r. 
                                                                            
DRnpp = -a/r *δx(x) + b/r *δy(x)  + c/r *δz(x) +  
               - [δx(y) +y Sxy] + b/r*δy(y) + c/r*δz(y)  
               - a/r*[δx(z) +z Szx]+ b/r*[δy(z) + z Syz]+ c/r *δz(z)                       (23) 
               - εy(x) *ac/r +εz(x) *ab/r -εy(y) *ac/r –εx(y) *bc/r. 
 
 
DRpnp = a/r *δx(x) - b/r *δy(x) + c/r *δz(x) 
               + a/r*[δx(y) +y Sxy] -b/r*δy(y) + c/r*δz(y)   
               + a/r*[δx(z) +z Szx]- b/r*[δy(z) + z Syz]+ c/r *δz(z)                      (24) 
               + εy(x) *ac/r +εz(x) *ab/r +εy(y) *ac/r +εx(y) *bc/r. 
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DRppn = a/r *δx(x) + b/r *δy(x) - c/r *δz(x)  
               + a/r*[δx(y) +y Sxy] +b/r*δy(y) - c/r*δz(y) 
               + a/r*[δx(z) +z Szx] + b/r*[δy(z) - z Syz]+ c/r *δz(z)                      (25) 
                - εy(x) *ac/r -εz(x) *ab/r -εy(y) *ac/r +εx(y) *bc/r. 
 
where the subscript ppp means body diagonal with all x, y and z positive; npp 
means body diagonal with x negative, y and z positive; pnp means body 
diagonal with y negative, x and z positive; and ppn means body diagonal with z 
negative, x and y positive. 
      Also a, b, c and r are increments in x, y, z and body diagonal directions 
respectively. The increment in body diagonal direction can be expressed as r² = 
a² + b² + c².  Similar equations have also been derived in [7]. 

The 4 body diagonal displacement errors shown in Eqns. 22 to 25 are 
sensitive to all of the 9 linear errors and some angular errors.  Hence it is a good 
measurement of the 3D volumetric positioning errors. The errors in the above 
equations may be positive or negative and they may cancel each other.  However, 
the errors are statistical in nature, the probability that all of the errors will be 
cancelled in all of the positions and in all of the 4 body diagonals are 
theoretically possible but very unlikely.  Hence it is indeed a quick measurement 
of volumetric positioning accuracy.   

In the FXYZ configuration, as shown in Eqns. 22 to 25 there are 4 angular 
error terms, εy(x)*ac/r,  –εz(x)*ab/r,  εy(y)*ac/r and –εx(y)*bc/r.  In the XFYZ 
configuration (Eqn. 12), most of the angular error terms are cancelled and only 2 
angular error terms, εy(y)*ac/r and –εx(y)*bc/r are left.  Similarly in the XYFZ 
configuration (Eqn. 13), only 2 angular error terms, εz(x)*ab/r and –εx(x)*bc/r 
are left.  Finally in the XYZF configuration (Eqn. 14), there are 4 angular error 
terms, εy(x)*ac/r,  –εz(x)*ab/r,  εy(y)*ac/r and –εx(y)*bc/r exactly the same as in 
the FXYZ configuration. Since the configuration for most common horizontal 
machining centers and vertical machining centers are XFYZ and XYFZ 
respectively, we can conclude that the body diagonal displacement measurement 
are not sensitive to angular errors.     

It is noted that if the 4 body diagonal displacement errors are small, then the 
machine errors are most likely very small.  If the 4 body diagonal displacement 
errors are large, then the machine errors are large.  However, because there are 
only 4 sets of data and 9 sets of errors, we do not have enough information to 
determine which errors are large.  In order to determine where the large errors 
are, the sequential step diagonal measurement or laser vector technique [7] has 
been developed by Optodyne to collect 12 sets of data with the same 4 diagonal 
setups.  Based on these data, all 3 displacement errors, 6 straightness errors and 
3 squareness errors can be determined.  Furthermore, the measured positioning 
errors can also be used to generate a 3D volumetric compensation table to 
correct the positioning errors and achieve higher positioning accuracy.  Hence 
3D volumetric positioning errors can be measured without incurring high costs 
and long machine tool down time.   
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8. Summary and conclusion 
 
In summary, the 4 body diagonal displacement measurement is a quick measure 
of all the 9 linear errors, 3 displacement errors, 6 straightness errors, 3 
squareness errors and some of the angular errors.   The sequential step diagonal 
measurement collects 12 sets of data to solve for all the 9 linear errors and 3 
squareness errors.  With additional 3 sets of linear displacement measurement 
for each axis, all the angular errors (except roll) can be determined [7].    
      In conclusion, for the XFYZ and XYFZ configurations, there are only 2 
angular error terms.  Hence the body diagonal displacement measurement is not 
sensitive to angular errors.  It is a good quick check of the volumetric 
positioning accuracy including 3 displacement errors, 6 straightness errors and 3 
squareness errors.  The sequential body diagonal or vector technique can be used 
to determine and compensate the volumetric positioning errors.      
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