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ABSTRACT

To ensure the motion accuracy of a machine tool over its entire three-dimensional workspace, it is
important to evaluate all the volumetric errors associated with three linear axes including three lin-
ear displacement errors, six straightness errors and three squareness errors. The laser step diagonal
measurement modifies the diagonal displacement measurement, described in the standard ISO 230-6,
by executing a diagonal as a sequence of single-axis motions. It has been claimed that the step diagonal
test enables the identification of all the volumetric error components by using a linear laser interfer-
ometer only. This paper first shows that the conventional formulation of step diagonal measurements
is potentially subject to a significant estimation error caused by setup errors in mirror and laser direc-
tions. We then propose a new formulation of laser step diagonal measurement, in order to accurately
identify three-dimensional volumetric errors even under the existence of setup errors. The effective-
ness of the modified identification scheme is experimentally investigated by an application example of
three-dimensional laser step diagonal measurements to a high-precision vertical machining center.

1. Introduction

In ISO standards(e.g. ISO 230-1 [1]), the motion accuracy of a
feed drive of a machine tool is basically evaluated in the axis-to-axis
basis; the linear positioning error and straightness errors are sep-
arately measured for each axis, and the squareness error between
two axes is then measured. Error measurements for a coordinate
measuring machine (CMM) described in ISO 10360 series contain
tests with a different concept. By using an artefact such as a ball
plate, all the three-dimensional position error components (inX, Y,
and Z) for the given reference location are directly measured over
the entire workspace. The importance of the evaluation of such vol-
umetric errors has been recently recognized also by many machine
tool builders [2]. Currently, technical committees in ASME (TC52)
and ISO (TC39) are working on the standardization of the definition
of volumetric accuracy for machine tools [3].

In accuracy measurement of machine tools, linear position-
ing errors are typically measured by using a laser interferometer.
Straightness and squareness errors are often measured by using
a high-precision displacement sensor and an artifact such as a
straight edge or a square edge. Naturally, the artifact must have
geometric and dimensional accuracies guaranteed to be higher than
the accuracy of the measured machine. Furthermore, since the mea-
surement is one-dimensional, an operator must change the setup of
asensor and an artifact every time for the measurement of each dif-
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ferent error component. For orthogonal three-axis machines, three
linear displacement errors, six straightness errors and three square-
ness errors must be measured by different setups. Dual-beam laser
systems or autocollimators to measure straightness and square-
ness errors are also available from many companies. They do not
require an artifact such as a straight edge, but it is the same in
that a different setup is needed to measure each different error
component.

_ For quicker, lower-cost evaluation of volumetric errors of a
machine tool, the standards ASME B5.54 [4] and ISO230-6 [5] define
the diagonal measurement by using a laser interferometer. As is
illustrated in Fig. 1, the machine moves along each body diago-
nal of the machine’s workspace, and the diagonal displacement is
measured by using a laser interferometer. Chapman [6] discussed
in details that it is not possible to use the diagonal measurement
to identify each volumetric error component, although it can be
used for a quick check of squareness errors. It is not possible to dis-
tinguish linear errors, straightness errors, and squareness errors of
each axis from the results of diagonal tests.

As an extension of diagonal measurement, the step diagonal
measurement, or the vector measurement, has been proposed by
Wang [7,8]. The step diagonal measurement modifies the diagonal
measurement by executing a diagonal as a sequence of single-axis
motions. Fig. 2 illustrates the three-dimensional (3D) step diagonal
measurement. Unlike the diagonal measurement, Wang claimed
that total three step diagonal measurements for different diagonals
can separately identify all volumetric errors, including three linear
displacement errors, six straightness errors and three squareness
errors. Compared to conventional measurements using a straight
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Fig. 1. Schematics of diagonal measurement.

edge and a square edge, it is thus significantly more time-efficient.
Since it does not require an artefact, it is lower cost, especially
for a large-sized machine, where large artefacts of high geometric
accuracy are needed.

Chapman [6] also discussed an issue with the step diagonal test.
He showed that the misalignment of mirror direction, as well as
the machine’s angular motion errors, may causes a significant error
in identified volumetric errors. In our previous publication [9], we
further extended this discussion to show that the conventional
formulation by Wang {7] is valid only when implicit assumptions
related to laser and mirror setups are met, and that it is generally
not possible to guarantee these conditions when volumetric errors
of the machine are unknown.

Then, for the two-dimensional (2D) version of step diagonal
measurement, we [9] proposed its new formulation such that
all volumetric errors can be identified even when significant
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Fig. 2. Schematics of 3D laser step diagonal measurement.
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setup errors exist. We showed that linear positioning errors must
be independently measured, and then normal error components
(straightness and squareness errors) can be identified by using the
proposed formulation.

Another potentially critical error factor for step diagonal mea-
surements is angular errors of each axis (i.e. yaw, pitch and
roll). Soons [10] formulated their effect on the 3D step diago-
nal measurement and clarified that they may cause a significant
identification error. He also suggested an interesting formula-
tion to separately identify angular errors from step diagonal
tests. However, he only presented its mathematical formulation,
without discussing its validity in practical industrial environ-
ment.

The main objective of this paper is to extend our discussion in
[9] to the 3D version of laser step diagonal measurement. Major
contributions of this paper, other than those previously presented
in[9], are summarized as follows: (1) a new formulation of 3D laser
step diagonal measurement is presented. The extension from 2D to
3D cases is not obvious, as will be discussed in Remark #1 in Section
3.2. (2) The feasibility of the cancellation of the machine’s angular
errors in step diagonal measurements is studied with considering
measurement uncertainties of laser measurement. (3) An experi-
mental validation of step diagonal measurement is presented. Since
Wang's first publication {7], to our knowledge, there has been
few publication that experimentally demonstrated its estimation
accuracy by comparing the estimates to conventional, more reli-
able measurements. The experimental studies presented in this
paper will be essential to promote its practical application to the
industry.

2. Review: conventional formulation of laser step diagonal
measurement and its inherent issues

This section briefly reviews the conventional formulation of the
identification of volumetric errors by step diagonal measurements
presented by Wang [7], and then its inherent issues discussed in
our previous publication [9].

Fig. 3 illustrates the setup of the 3D step diagonal measurement.
For the simplicity of drawing, only single block is depicted. Define
Aex(x(k)), Aey(x(k)) and Ae,(x(k)) as the positioning error in X-, Y-
, and Z-directions, respectively, when the machine moves toward
the X-direction from the reference position x(k — 1) to x(k) (k =
1, ..., N).In other words, when the machine moves from the point
A to B in Fig. 3, the vector representing its actual motion is given
by [ax + Aex(x(k)) Aey(x(k)) Aexx(k)]". Aex(y(k)), Aey(y(k)),
Aez(y(k)), Aex(z(k)), Aey(z(k)), and Aez(z(k)) are defined similarly.
The subscript of Ae, () represents the error direction, and the sym-
bol in parentheses represents the direction of motion. In this paper,
these total 9N error components are collectively called volumetric
errors. '

The nominal size of each blockis givenby ax x ay x az (inX x Y x
Z), as shown in Fig. 2 (i.e. x(k) = x(k — 1) + ax, y(k} = y(k — 1) + ay,
and z(k) = z(k — 1) + a; in Fig. 3). When the laser is aligned to the
body diagonal AG in Fig. 3, the diagonal displacement with the
motion toward X, Y, and Z directions in the k-th block are respec-
tively given by Ry,ppp(k), Ry,ppp(k), and Rz ppp(k). This laser beam
setup is referred to as ppp measurement hereafter. Note that “p”
stands for “positive,” and “ppp” indicates that all of x, y and zcompo-
nents of the laser beam direction vector are positive. The subscript
of R,,.(k) represents the direction of motion (x, y, z) and the laser
direction. A similar measurement is done as the laser is aligned
along body diagonals BH and DF. They are respectively referred to
as npp and pnp measurements (“n” stands for “negative”). Ry, npp(k),
Ry, npp(k), Rz, npp(k), R, pnp(k), Ry, pnp(k), and Rz pnp(k) are defined sim-
ilarly.
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Fig. 3. Volumetric errors and diagonal displacements in single block.

For example, Ry, ppp(K) is given by:

ax + Aex(x(k))
Repop(k) = [beopp yppp  Lzopp Aey(x(k)) (1)
Ae(x(k))
wherek =1, ..., N.(Ix,ppp, ly.ppp lz,ppp) is the unit vector represent-

ing the laser direction in the ppp measurement. (Ix,npp, ly,npp, Lz, npp)
and (l,pnp. ly,pp, lz,pnp) are defined analogously. By combining
similar formulations for other diagonal displacements, we have

i71:

C bppp boop lzpop 0 0 0 Y Y
0 0 bkpop  lyppp  lzpp O 0

0 0 0 0 0 0 lenpp lypp
bpp oy lp O 0 o o0 0
0 0 0 —‘x,pnp —Iy'pnp —lz,pnp 0 0

0 0 0 0 0 0 lepnp lypmp

Assume their nominal laser directions i.e.:

1
[bepops  by.pwps Leppp | = Tal [ax, @y, @]
[lx,npp’ by, npp, lz_,npp] = W ["ax, Ay, az] (3)

[lx,pnp’ ly,prp, lz,pnﬁ ] = [ax, —ay, az]

where |al:=+/aZ +a} +aZ. Then, all the volumetric errors,
Aex(X), ..., Aey(z) can be estimated by solving Eq. (2).

Our previous paper [9] has discussed inherent issues with this
conventional formulation. Notice that the conventional formula-
tion is valid only when the following conditions are satisfied: (1)
laser beam directions are precisely aligned to nominal directions,
and (2) the flat mirror is precisely aligned perpendicular to the laser
beam, and (3) the machine's angular errors are sufficiently smail.
In practical setup of step diagonal measurement, the direction of
the laser beam and the flat mirror can be only aligned based on the
motion of the machine to be measured. In such a case, it is generally

Lz, ppp
Lz, npp
0

lz,pnp B

not possible to guarantee the satisfaction of (1) and (2), when vol-
umetric errors of the machine are unknown. Therefore, volumetric
errors identified by the conventional formulation generally contain
a potentially significant identification error. This discussion applies
to the 3D case (2) as well.

3. New formulation of 3D laser step diagonal measurement
3.1. Sensitivity of setup errors in conventional formulation

To propose a new formulation of laser step diagonal measure-
ment such that setup errors do not impose any effect on estimated

0 7 [a+ Aex(x(k)7 Ry ppp(K)

] Aey(x(k)) Ry,ppp(k)
Aey(x(k)) Rz ppp(k)

0 Aex(y(k)) Re,npp(N —k+1)
Aez(y(k)) Rz,npp(k)
Aex(z(k)) Rx,pnp(k)

0 Aey(z(k)) Rypnp(N—k+1)

L a + Aey(z(k)) Rz.pnp(k)

volumetric errors, this section first formulates the sensitivity of
setup errors on the estimates of volumetric errors in the conven-
tional formulation (2). The misalignment errors of laser and mirror
directions are collectively referred to as setup errors hereafter. To
simplify the discussion, this section assumes that the machine’s
angular error is negligibly small. The influence of angular errors
will be discussed later in Section 3.3.

In the k-th block, suppose that the “nominal” diagonal distance
for the x-motion is denoted by Ry ppp(k), when the laser direction is
perfectly aligned to the nominal direction and the mirror is aligned
perfectly perpendicular to the laser direction. The symbol”indicates
the nominal distance without setup errors. As has been discussed in
[9], the misalignment of laser and mirror directions gives a constant
error to the diagonal displacement at each block. Suppose that this
misalignment error in ppp measurement is given by Ry, ppp. In other
words,

Ry, ppp(k) = Re,ppp(k) + SRx,ppp (4)
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Fig. 4. Configuration of experimental machine.

Under the assumption that the machine’s angular error is negligibly
small, we can approximate that the effect of setup errors, SRy, ppp.
is the same for all the blocks. Other parameters, SRy, ppp, SRz, ppp,
ORx,npp+ SRy, npp, SRz, npp, SRy, pnp, SRy, pnp, and SRy, pnp, are defined anal-
ogously. Notice that we have:

SRy, ppp + SRy, ppp + SRz,ppp ~ 0 ()

which applies also to npp and pnp measurements. By solving Eq.
(2), we have:

Aéy(x(k)) = %{Rx,,,m,(k) + Ry, npp(N — k + 1) — (3R, ppp-+8Rs mpp)}
— Oy (6)

Agy(x(k)) = M{R:c ,ppp(K) — Ry, pnp(k) — (8Rx,ppp — SRy, pnp )} 7

Iall

A&, (x(k)) = {Rx pnp(K) — Rynpp(N — k + 1) ~ (8Ry, pap—~06Rx npp)}

(8)

Aéx(y(k))-ﬂ{nyppp(k) Ry,npp(K) — (Ryppp — 8Ry.mpp)}  (9)

Agy(y(k)) = "a" {Ry poo(K) + Ry, pnp(N — k + 1)—(8Ry, ppp+6Ry, pnp )}

—ay (10)

A&y = 5] 2 e Ry (k) = Ry prp(N — K+ 1)=(8Ry mpp—SRyprp)}

(11)
A&(z(k)) = U{Rzm(k) Re,npp(K) — (8Rzppp — SRempp)} (12
Agy(z(k)) = 2L 32, Reroolk) — Repmp(k) - (Reppp ~ Repmp))  (13)
&,(2() = 22 3, (Renop(K) + R pnp(K) = (3R mpp + SR pmp) — Gz

Note that the symbol ~ represents the estimate under setup
errors. Egs. (6)-(14) indicate that the estimated volumetric errors
are subject to the influence of setup errors by a factor of |ja|/2a,.
In practical setups, it is generally not valid to assume that they are
negligibly small. Furthermore, it can be easily observed that it is
not possible to identify nine setup errors, Ry, ppp, . . . , 5Rz, pnp from
three step diagonal measurements only.

3.2. New formulation to identify volumetric errors under setup
errors

In order to cancel setup errors, we propose to directly measure
linear error components, Aex(x(k)), Aey(y(k)) and Ae,(z(k)) (k =

1, ..., N). First, for the simplicity of notation, define:

A.xx:=8Rx,ppp + aRx'npp, A.yx:=6Rx,ppp - aRx,pnp,

A.p(:';lSRx,pnp - (SRx’npp, A.xy:=8Ry,ppp - 8Ry’npp,

Ayy:=8Ry,ppp + aRy,pnp Iy A.zy :=8Ry’npp - (SRy’pnp Py (1 5)
Axz'=8Rz,ppp — ORz,mpp,  Ayz:=8Rz,ppp — SRz prp,

Az2:=8Rz,npp + SRz, prp

which represent the effect of setup errors in Egs. (6)-(14), respec-
tively. For example, Axx represents the setup error term in the
formulation of A&x(x(k)) (Eq. (6)). The subscript of each symbol
indicates the volumetric error that contains it. Then, when linear
positioning errors, Aex(x(k)), Aey(y(k)), Ae(z(k)) (k=1,...,N),
are given, from Egs. (6), (10), and (14), Ax, Ayy. and Az can be
respectively estimated as follows:

):xx:=mean { Tal =X (Aey(x(k)) + ar) + (Rx,ppp(K) + Ry npp(N — k + 1))}
‘ny:=mean{ Tal 2 (Aey(y(k)) + ay) + (Ry,ppp(K) + Ry, prp(N — k + 1))} (16)
Kz,:=mean { " i (Aez(z(k)) +az) + (Rznpp(K) + R, pnp(k))}

where the function “mean” represents the mean value over k =
1,...,N. Notice that the orientation of the coordinate system
can be arbitrarily set. For example the coordinate system can be
defined such that:

mean{Aey(x(k))} = mean{Ae,(x(k))} = mean{Aey(z(k))} =0 (17)
Under this assumption, Ayx, Az, and Ay, can be estimated from Eqs.
(7), (8) and (13) as follows:

Ayx:=mean { = A8y (x(K)) + (Re,ppp(k) — Reprp(k)) }

ix:=mean {— %G—EAéz(x{k]) + (Repnp(K) — R npp(N — k + 1)) }
Ayz:=mean {—% A&y(z(k)) + (Rz,ppp(k) — Rz, pnp(K)) }
(18)

Now, from the definitions (15) and Eq. (5), we have:

Axy_—kyx—ku—kxz :
Aoy = A=Ay — Ayy (19)
hg = A= — Ay — Az

From Egs. (16), (18) and (19), we can identify all of nine parameters
in Eq. (15). 6N volumetric errors, A&y(x(k))~A#&(z(k)), can be then
identified by Egs. (6)-(14).

Remark 1. Inthe 2D case discussed in [9), setup errors only affect
the estimates of linear error components, &(x(k)) and &,(y(k)). In
other words, when &,(x(k)) and &,(y(k)) are replaced with measured
values, the conventional formulation (2D version of Eq. (2)) gives
good estimates for normal error components, &y(x(k)) and &(y(k))
(k=1, ..., N).This is not the case with the three-dimensional case.
As has been discussed above, the conventional formulation (2) may
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give a significant estimation error for normal error components,
even when linear error components are directly measured and
excluded from the estimation.

Remark 2. Both conventional and proposed formulations of
step diagonal measurement assume that the machine’s volumetric
errors are precisely repeatable. Clearly, the machine’s unrepeatable
errors cause an estimation error. Laser measurement uncertainties
in total six measurements also deteriorate the estimation accuracy.
Although it is not possible to assure the estimation uncertainty
lower than the accumulated positioning uncertainties and mea-
surement uncertainties, we claim that a significant practical value
of step diagonal measurement is in that it can evaluate straight-
ness and squareness errors by using a linear laser interferometer
only. Compared to the conventional artifact-based measurement,
it requires lower cost, applying a laser interferometer to the eval-
uation of all the errors, without using a artifact of high geometric
accuracy. It is particularly advantageous for a large-sized machine.

Remark 3. When linear error components, Aex(x(k)), Aey(y(k))
and Ae,(z(k)), are known, Eq. (2) can be reformulated as follows:

" lop e bpp g beppp b [ Aey(x(k))T
e ly, npp e IZ, npp lx, npp lz, npp lx, npp ly, npp Aez (x( k ))
ly,pﬂp ll,pﬂp _lx,pnp - lz,pnp lx,pnp ly,pnp Aex (_y( k))
byonp  Lpnp 0 0 0 0 Aez(y(k))
0 0 ko lzppp O 0 Aex(z(k))

3.3. Canceliation of the effect of angular errors

The straightness error of a feed drive caused by the deformation
of guideways is often accompanied with angular errors (yaw, pitch,
and roll) [11]. The formulation (2) ignores the influence of angu-
lar errors. When angular errors are not negligibly small compared
to position errors, they may cause significant estimation errors.
Soons [10] formulates the effect of angular errors on the 3D step
diagonal measurement (it is partially presented also by Yang et al.
[12]). Soons also presented a formulation to identify angular error
from step diagonal measurements. This section first briefly reviews
Soons’ formulation. The contribution of this paper is on the dis-
cussion of the feasibility of this scheme with the consideration of
practical measurement uncertainties of laser measurement, which
will be presented in Section 4.2.

This section assumes the machine configuration depicted
in Fig. 4 (the experimental machine presented in Section 4
has the same configuration). Define the position errors with
respect to the reference position x(k) in X-, Y-, and Z-
directions by ex(x(k)):=2f=1 Aex(x(i)), ey(x(k)):=E:.‘=1 Aey(x(i)),
and ez(x(k)):=2::.‘=1 Aez(x(i)). e.(y(k)),and e.(z(k)) are defined anal-
ogously (* = x, y, z). The angular errors around X-, Y- and Z-axes
at the reference position x(k) are defined by €x(x(k)), €,(x(k)), and
€:(x(k)), respectively. €,(y(k)) and €.(z(k)) are defined analogously
(*=x,y,2).

" Ry,ppp(k) + Ry, ppp(k) + Rz,ppp(k)) —(ax+ay+a;)— (Aex(x(k)) + Aey(y(k)) + Aez(z(k)))
Renpp(N —k + 1) + Ry npp(K) + Rz npp(k)) — (Gx + ay + az) — ( Aex(x(k)) + Aey(y(k)) + Aez(z(k))
Ry, pnp(K) + Ry,pnp(N —k + 1) + Rz,pnp(k) —(ax +ay +az) — (Aex(x(k)) + Aey(y(k)) + Aez(z(k))

Ry, pnp(k) — ax — Aex(x(k))
Ry,pop(k) — ay — Aey(y(k))
Rz ppp(k) — az — Aez(z(k))

By solving Eq. (20), for example, Aey(x(k)) and Ae,(x(k)) can be
respectively given as follows with the consideration of setup errors
represented as in Eq. (4):

A&y (x(k)) = 2 o (Reapp(h) ~ Reprp(k)

"“" o (BRoomp -+ 3Ry ppp + R ppp)A&H(Y(K)

a .
— g_"l_Rx,PPp(k) = (Rx.npp(N — k + 1) + Ry,npp(k)

+R;, npp(k)) - (Ry,pnp(N —k+1)+ Rz,pnp(k))}

+ 1 T @0+ @+ Ae(x(k))+ Aey(y(K))+ Aea(z(l)

+ -2—-(3Rx,pnp + &Ry, ppp + 6Rz,ppp) (21)
Qx

where nominal laser beam directions (3) are assumed. Under the
assumption in Eq. (17), the effect of setup errors on the first equa-
tion is given by:

(Sf\,x,pnp + 81):\'); ppp + 8RZ ,PPp

- mean{ 29 Ay (x(k)) + (Rx,ppp(k) — Rx pnp(k))} (22)

lall
which can remove the effect of setup errors on the estimate of

Aéx(y(k)) given by the second equation in Eq. (21). Analogous rela-
tionship can be observed for A&;(x(k)) and Aé(z(k)), Aé,(y(k))and
A&y(z(k)). Therefore, by simply solving Eq. (20), one can estimate
6N volumetric errors, A8y(x(k))~A8,(z(k)), removing the influence
of setup errors. This is an alternative formulation of the proposed
estimation scheme presented in this subsection.

Including the influence of angular errors, the position error in
X, Y, and Z directions for the reference position (x(k), y(k), z(k}) can
be respectively given as follows'{10,12]:

ex(x(k), y(k), z(k)) = ex(x(k)) + ex(y(k)) + ex(z(k}) + z(k) - €y(x(k))
+2(k) - €,(y(k))

ey(x(k), y(k), z(k)) = ey(x(k)) + ey(y(k)) + ey(z(k)) + x(k) - €z (y(k))
—2(k) - €x(y(K)) — z(k) - €x(x(k))

ez(x(k), y(k), 2(k)) = ez(x(k)) + ez(y(k}) + ez(z(k)) — x(k) - Ey(}’(k()%3)

Angular errors also change the relative direction of the mirror to
the laser beam direction. For example, as shown in Fig. 5, sup-
pose that the diagonal displacement in the pnp measurement (i.e.
the laser beam is aligned to the diagonal DF} when the mirror
moves from the point D to A is represented by Rpa pnp(k). Similarly,
the diagonal displacement with the motion from C to B is repre-
sented by Rcp pnp(k). Considering all the effects of angular errors,
we have:

a.
Rpa, pnp(k) — Rep pnp(k) = —ax - 2 A€x(x(k))

+ax- " au - Agz(x(k))

It contains angular errors only, with no influence of positioning
errors. Similarly, we have:

2. Aer(x(k))

- A€y(z(k)) +ay - T
(25)

RHG,pnp(k) - RDC,pnp(k) =ay- " "
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Fig. 5. Comparison of two diagonal displacements for the estimation of angular
errors.

L

0 20 <40 60 80 2100 120
Reference position in X mm
x10°
(b) 2 — -
Eslimated by conventnonal formulatnon 4
.............. Estlmated by. proposed tormulallon
E .
E
. T g I I T U e
wb-
: sihurtil Measured by using artefact : !
-2 - rgitsluomol 180 ] i L A3
0 20 40 60 80 100 120
Reference position in X mm
x107°
{C) 2/ $3 10w P4 001 T ! T L D

Estrmated by conventlonal fon'nulatron 1 (2) (AP

Measured by usmg aﬂefact

; Estlmated by proposed forrmﬂation
-2 rasurhs ‘Iu,'-—a | 7 YT -.'-i-- P il
] 20 40 bU 80 1 UU 120

Reference position in X mm

Fig. 7. Measured and identified volumetric errors for the motion toward X direction. (a) The positioning error in X with the motion toward X, ex(x(k)). (b) The positioning
error in Y with the motion toward X, ey(x(k)). (¢} The positioning error in Z with the motion toward X, e (x(k)).




522 S. Ibaraki, T. Hata / Precision Engineering 34 (2010) 516-525

Table 1
Measured and estimated straightness and squareness errors.
Measured (pm) : Conventional estimation (m) ] Proposed estimation (pm)
Positioning error in X 1.7 -
Positioning error in Y -183 —
Positioning error in Z 209 -
Straightness of X axis (Y direction) 04 04
Straightness of X axis (Z direction) 0.7 0.4
Straightness of Y axis (X direction) 0.6 0.5
Straightness of Y axis (Z direction) 0.3 0.7
Straightness of Z axis (X direction) 0.6 0.8
Straightness of Z axis (Y direction) 1.1 0.9
Squareness of X — Y 3.2 -14
Squareness of X — Z -4.3 0.1
»Squareness of Y —Z -39 -0.1
All the errors are over the range of 120 mm.
x10°
(@ '
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Fig. 8. Measured and identified volumetric errors for the motion toward Y direction. (a) The positioning error in X with the motion toward Y, ex(y(k)). (b) The positioning
error in Y with the motion toward Y, e,(y(k)). (c) The positioning error in Z with the motion toward Y, e;(y(k)).

Reznpo(k) ~ Ranmpp(K) = Gy - 75 - Acy(x(k) +ay - 72
Rap,mpp(N = K) = Rec.npp(N — k) = ay - 52 " - Ax(x(K)) Aez(K) (28)
+ay- - A€z (x(k)) (26) By solving these five equations, five out of nine angular errors for
||a|| each block can be identified [10].
4. Experimental validation
Ret,npp(k) = Rap,npp(k) = —ay - |]a||  A&x(z(K)) 4.1. Estimation of volumetric errors
- A€z (z(k)) (27) The problems with the conventional formulation of laser step

Y .
”“" diagonal measurement, and the effectiveness of its proposed for-
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Fig. 9. Measured and identified volumetric errors for the motion toward Z direction. (a) The positioning error in X with the motion toward Z, e.(z(k)). (b) The positioning
error in Y with the motion toward Z, e,(z(k)). (c) The positioning error in Z with the motion toward Z, ez(z(k)).

mulation, are experimentally validated by an application example
to a three-axis vertical-type high-precision commercial machining
center. ;

The machine configuration is shown in Fig. 4. It has three orthog-
onal linear axes, which are all driven by a ball screw and a servo
motor with a slide guideway. Its positioning resolution is 0.1 pm
in all the axes. The machine’s strokes are: X: 900 mm, Y: 500 mm,
Z: 350 mm. For laser measurements, a laser doppler displacement
meter, MCV-500 by Optodyne, Inc. is used. Laser beam directions
are aligned by using a quad-detector, LD42 by Optodyne, Inc. The
step diagonal measurements are done with the step size ay = ay =
a; = 10mm, over the entire range of 120mm x 120mm x 120 mm
(i.e. 12 blocks in X, Y, and Z directions). Fig. 6 shows the experimen-
tal setup of laser step diagonal measurement.

First, volumetric errors are estimated by the conventional
formulation (2). Figs. 7-9 show estimated position errors with
respect to the reference position (“Estimated by conventional for-
mulation”). For each of step diagonal measurement, the same
measurement is repeated by five times. Figs. 7 - 9 plot the mean of
estimated errors by the marks “o”, as well as their variation at each
measurement point by horlzontal parallel lines (“=").

For the comparison, linear positioning errors inX, Y, and Z direc-
tions, ex(x(k)), ey(y(k)), and e,(z(k)), were measured by using the
same laser interferometer aligned directly toward X, Y, and Z direc-
tions, respectively. The straightness errors in X, Y, and Z directions

were measured by using a laser displacement sensor, LK-G10 by
Keyence Corp. (measurement resolution: 0.01 pm), and an optical
flat as the straight-edge (according to the manufacturer’s calibra-
tion chart, its straightness error is < PVA/4, A = 0.6328 pm). The
squareness ertors of X-Y, Y-Z, and X-Z axes were measured by using
the same laser displacement sensor, and the square-edge by Fujita
Works, Ltd. (according to the manufacturer’s calibration chart, its
squareness erroris < 0.5 pm [ 150 mm). Measured position errors in
the direction normal to the feed directions, ey (x(k)), ez(x(k)), ..., are
given by combining measured straightness and squareness errors.
In Figs. 7 - 9, these measured values are also plotted (“Measured by
using artefact”). Similarly as the estimated values, the same mea-
surement was repeated by five times, and their mean values as well
as their variation are plotted in the figures.

Then, volumetric errors are estimated based on the proposed
formulation of step diagonal measurements presented in Section
3.2, by using displacement profiles in ppp-, npp-, pnp-, X-, Y-, and
Z- directions. First, we assume that the machine’s angular errors
are negligibly small. Estimated profiles are also plotted in Figs. 7 -
9 (“Estimated by proposed formulation”). Note that in all the cases,
the coordinate system is defined as shown in Eq. (17).

Table 1 summarizes measured and estimated straightness and
squareness errors. Here, the straightness error is defined by the
maximum variation of mean values of normal errors (for example,
ey(x(k)) for the straightness error of X axis to the Y direction) from
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Fig. 10. Estimated angular

their least-square mean line. The squareness errors are defined by
the gradient of the least-square mean line of ex(y(k)) (X-Y), ex(z(k))
X-Z, and e;(y(k)) Y-Z with respect to that of ey(x(k)), e(x(k)), and
ey(z(k)), respectively.

From Figs. 7 — 9 and Table 1, it can be clearly observed that,
when the conventional formulation (2) is used, the estimated vol-
umetric errors from step diagonal measurements have significant
estimation errors. The estimation error is particularly large in the
estimates of linear positioning errors in Y and Z directions (at max-
imum about 22 p.m over 120 mm in the Z direction).

In overall, volumetric errors of the measured machine are
smaller than typical general-purpose machining centers in the mar-
ket. The straightness errors of X, Y, and Z axes are all smaller than
1 wm. Considering the measurement uncertainties associated with
the laser doppler displacement meter or the artefacts, it is diffi-
cult to draw any conclusion from the comparison in straightness
errors. On the other hand, the squareness errors of the measured
machine are relatively larger, and thus clearer comparison of mea-
sured and estimated values are possbile. Fig. 8(a)(— the squareness
of X-Y), Fig. 9(a) (- the squareness of X-Z), and Fig. 9(b) (—
the squareness of Y-Z), show that the conventional formulation
of step diagonal measurements resuits in larger estimation errors
(see also Table 1). For example, as is shown in Fig. 8(a), the mea-
sured squareness error between X and Y axes is —1.4 pm / 120 mm.
The conventional formulation of step diagonal measurements gives
its estimate of 3.2 um / 120mm. The estimate by the proposed
formulation is —1.2 wm / 120mm. The estimate by the proposed
formulation shows better match with the measured value. Simi-
lar observation can be made for all the squareness errors shown in
Table 1.

4.2, Identification of angular errors

A small difference between measured volumetric errors and
their estimates by the proposed formulation may be caused by
the machine’s angular errors. The angular errors are estimated
by applying the formulations (24)—-(28). Note that all the neces-
sary diagonal displacements can be obtained by performing three
measurements moving the mirror in the sequence of X > Y > Z
(ie. D> C—> B— F in Fig. 5 in pnp measurement), Y - Z - X
(D>A->E-F),Z—->X—->Y (D—H- G- F) for each diago-
nal.

Fig. 10 shows estimated angular errors by using the formulation
(24)-(28). Compared to actual angular errors of the experimental
machine, the estimates in Fig. 10 are clearly too large.

For example, from Eqs. (24) and (26), A€x(x(k)) can be estimated
by:

Aex(x(k))

= g {RAD.npp(N — k) — Rpc,npp(N — k) — Rpa, pnp(k) + Rca,p,,p(k)}
(29)

where it is assumed that ax = ay = a, = a for the simplicity of com-
putation. Suppose that measured diagonal measurements have an
uncertainty of 0.1 wm in one block. From Eq. (29), it is observed that
this measurement uncertainty may cause the estimation uncer-
tainty of Aex(x(k)) up to 3.5 x 10~5 rad at the worst case (a=
10 mm). In 12 blocks, this may be accumulated to €x(x(12)) = 4.2 x
104 rad. To make the estimation uncertainty sufficiently small to
evaluate angular errors on typical machining centers, the uncer-
tainty of laser diagonal measurements must be much smaller than
0.1 pum for one block (10+/3 mm), which is practically quite difficult
in a typical factory environment. We conclude that, although it is
mathematically possible to estimate a part of angular errors by the
formulation presented by Soons [10], it is practically difficult under
typical uncertainty of laser measurement in a factory environment.

5. Conclusion

The conventional formulation of the step diagonal measurement
proposed by Wang [7] is valid only when the following implicit con-
ditions are met: (1) laser beam directions are precisely aligned to
nominal directions, (2) the flat mirror is precisely aligned perpen-
dicular to the laser beam direction, and (3) the machine’s angular
errors are sufficiently small. An inherent problem with the conven-
tional formulation is that it is generally not possible to meet (1) and
(2) by the adjustment of the setup, when volumetric errors of the
machine are unknown. The new formulation proposed in this paper
suggests that linear positioning errors must be independently mea-
sured, and then normal error components (namely, straightness
and squareness error components) can be identified by using step
diagonal measurements even under the existence of setup errors.

As an application example, the proposed scheme was applied
to estimate three-dimensional volumetric errors on a machin-
ing center of the positioning resolution of 0.1 wm. Experimental
results indicated that the proposed formulation resulted in much
smaller estimation errors than those by the conventional formula-
tion. Based on the proposed formulation, the squareness error of
X-Y, X-Z, and Y-Z axes were estimated with an estimation error of
at maximum about 3 pm.

The practical validity of the estimation of angular errors from
step diagonal measurements based on Soons’ formulation [10] was
also studied in experiments. Due to the uncertainty of laser dis-
placement measurements in a typical factory environment, we
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showed that it is difficult to cancel the influence of angular errors
by using this formulation. Step diagonal measurements may dete-
riorate when the machine to be measured has significant angular
errors.
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