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ABSTRACT 

The laser step diagonal measurement modifies the diagonal 
displacement measurement by executing a diagonal as a se-
quence of single-axis motions. It has been claimed that it en-
ables the identification of all the volumetric error components 
including linear errors, straightness and squareness errors. In 
this paper, we show that the conventional formulation of the 
step diagonal measurement is valid only when implicit assump-
tions related to the configuration of laser and mirror setups are 
met, and that its inherent problem is that it is generally not pos-
sible to meet these conditions by the adjustment of the setup. 
To address this problem, we propose a new formulation of the 
step diagonal measurement, in order to accurately identify 
volumetric errors even under the existence of setup errors. The 
effectiveness of the proposed modified identification scheme is 
investigated experimentally by an application example to a 
high-precision machine tool. 
Key Words: Step-diagonal measurement, volumetric errors, 
machine tool, laser interferometer.  

INTRODUCTION 
To meet increasing demands in the manufacturing of opti-

cal parts or electronic parts, high-precision and ultra-precision 
machine tools have been rapidly introduced into the market in 
recent years. To ensure the motion accuracy over the entire 
three-dimensional workspace of such a machine tool, it is im-
portant to evaluate all the volumetric errors including 3 linear 
displacement errors, 6 straightness errors and 3 squareness er-
rors (Wang, 2005). For the measurement of linear displacement 
errors, laser interferometers of the resolution sufficient to 
measure high-precision and ultra-precision machines are now 
available. It is, however, relatively difficult and time-
consuming to measure other volumetric errors such as straight-
ness and squareness errors. Typically, straightness and square-
ness errors are measured by using a high-precision displace-
ment sensor and an artifact such as a straight edge or a square 
edge. For the measurement on high-precision or ultra-precision 
machines, the artifact whose geometric and dimensional accu-
racies of the artifact are guaranteed to be higher than the accu-
racy of the measured machine is needed, which requires higher 
measurement cost. Furthermore, since the measurement is one-

dimensional and its path is restricted to a line or a square, an 
operator must change the setup of a sensor and an artifact every 
time for the measurement of each different error component. 
Dual-beam laser systems or autocollimators to measure 
straightness and squareness errors do not require an artifact 
such as a straight edge, but it is the same in that a different 
setup is needed to measure each different error component. 

For quicker, lower-cost evaluation of volumetric errors of a 
machine tool, the step diagonal measurement has been proposed 
by Wang (2000). In the diagonal measurement described in 
B5.54 and ISO230-6, the machine moves its X, Y, and Z axes 
simultaneously along each body diagonal. In the step diagonal 
measurement, each axis is moved one at a time along the “zig-
zag” path toward the body diagonal direction. Wang claimed 
that additional data enables the identification of all the volumet-
ric errors from step diagonal measurements. 
 The objective of this paper is to discuss the validity of the 
error identification based on step diagonal measurements. In 
this paper, we show that the formulation of the step diagonal 
measurement presented by Wang (2000) is valid only when 
implicit assumptions related to laser and mirror setups are met, 
and that its inherent problem is that it is generally not possible 
to meet these conditions by the adjustment of the setup. As for 
issues in the laser step diagonal measurement, Chapman (2003) 
discussed the misalignment of the mirror, and Soons (2005) 
formulated the effect of angular errors on identification accura-
cies. This paper will present rather critical issues with Wang’s 
formulation of the step diagonal measurement. Then, as reme-
dies for these issues, we will propose a new formulation of the 
step diagonal measurement, in order to accurately identify each 
volumetric error even under the existence of setup errors. The 
validity of the discussion on issues in step diagonal measure-
ments and the effectiveness of the proposed modified identifi-
cation scheme will be investigated experimentally by showing 
application examples to a high-precision machine tool. 

CONVENTIONAL FORMULATION OF STEP 
DIAGONAL MEASUREMENT 

First, this section briefly reviews the conventional formula-
tion of the identification of volumetric errors based on the step 
diagonal measurement presented by Wang (2000). To simplify 
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the discussion, this paper only considers the two-dimensional 
step-diagonal measurement in the XY plane. The extension to a 
three-dimensional case is straightforward. 

Figure 1 illustrates the setup of 2D step-diagonal measure-
ment. As the machine spindle, where a plane mirror is attached, 
moves along a “zig-zag” path, the moving distance along the 
face diagonal is measured by using a laser interferometer. As 
illustrated in Fig. 2, suppose that the laser is aligned to the di-
rection represented by the unit vector lpp=[ lx,pp, ly,pp] (this setup 
is referred to as pp measurement hereafter). Define Ex(x) and 
Ey(x) as the positioning error in x- and y-directions, respec-
tively, due to the motion toward x direction (i.e. A→B). Ex(y) 
and Ey(y) are defined similarly. In this paper, these four error 
components are called volumetric errors. The distance meas-
ured by a laser interferometer with the motion toward x (A→B) 
and y (B→D) are given by Rx,pp and Ry,pp, respectively. A simi-
lar measurement is done as the laser is aligned along the diago-
nal BC (this setup is referred to as np measurement). Rx,np and 
Ry,np are defined similarly. Then, we have (Wang, 2000): 
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Assume nominal laser directions, i.e.  
[ ] [ ] 22

,, baball ppxppx += , [ ] [ ] 22
,, baball npxnpx +−=  (2) 

Then, volumetric errors, Ex(x), Ey(x), Ex(y) and Ey(y), can be 
estimated from Rx,pp, Ry,pp, Rx,np and Ry,np by solving Eq. (1).  

ISSUES IN VOLUMETRIC ERROR IDENTIFICATION 
BASED ON STEP DIAGONAL MEASUREMENT 
An inherent issue in the identification of volumetric errors 
based on Eq. (1) is that Eq.(1) is valid only when the following 
conditions are satisfied, and if they are not satisfied, they likely 
result in non-negligible identification errors.  
(1) Laser beam directions must be precisely aligned to nomi-

nal directions, Eq. (2).  
(2) The flat mirror must be precisely aligned perpendicular to 

the laser beam direction. 
(3) The angular errors of the machine are negligibly small. 

In practice, no matter how careful an operator sets up the la-
ser head and the mirror, it is simply not possible to satisfy the 
conditions (1) and (2), when the positioning accuracy of the 
machine is unknown. We claim that this is an inherent critical 
issue with the conventional formulation.  

The effect of angular errors on the identification accuracy 
was discussed in details by Soons (2005), and thus it is not con-
sidered in this paper. 

Misalignment of laser beam directions 
Except for a special case, the laser beam direction in pp 

and np measurements can be only aligned based on the motion 
of the machine to be measured. That is, in a typical setup, the 
laser beam direction is aligned such that it becomes parallel to 
the machine’s diagonal. For example, when the machine moves 
from A to D in Fig. 2, the laser direction is adjusted such that 
the deviation of the laser spot location on the mirror is mini-
mized (the alignment can be done more precisely if a quad-
detector is used). Here, if the machine has volumetric errors and 
they are unknown, it is not possible to align the laser beam per-
fectly to the nominal direction. An illustrative example is 
shown in Fig. 3. This example assumes that a=b and Ex(y)>0, 
Ex(x)=Ey(x)=Ey(y)=0. Since the laser beam is aligned to the ma-
chine’s diagonal, laser directions in pp- and np- measurements 
do not cross perpendicularly. Since the identification based on 
Eq. (2) assumes the perpendicularity of laser beam directions 
(in case of a=b), it potentially causes an identification error. 

Notice that a small misalignment error of laser direction 
does not affect much measured displacements, Rx,pp, Ry,pp, Rx,np 
and Ry,np, as has been also mentioned by Wang (2000). How-
ever, an error in lx,np, ly,np, lx,np, ly,np may impose non-negligible 
identification errors when solving Eq.(1).  

Illustrative simulation examples 
To show that the misalignment error of laser may poten-

tially results in a large identification error, illustrative numerical 
simulations are presented. Table 1 compares given and esti-
mated volumetric errors. In numerical simulations, laser direc-

Figure 3. Misalignment of 
laser beam direction 
caused by machine’s 
volumetric error 
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Figure 4. Misalignment of mir-
ror direction caused by ma-
chine’s volumetric error 
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Figure 1. The schematics 
of two-dimensional step-
diagonal measurement 

Figure 2. Volumetric errors and 
diagonal displacements 
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Table 1. Simulated volumetric errors identification by con-
ventional formulation of step-diagonal measurements 
 Case (a) Case (b) Case (c) 
 given estimated given estimated given estimated
Ex(x) 0 -0.05 0.1 0.1 0 -0.0002 
Ey(x) 0 0 0 0 0 0 
Ex(y) 0 0 0 0 0.1 0.1000 
Ey(y) 0.1 0.15 0.1 0.1 0 0.0002 
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tions are assumed to be aligned perfectly to the machine’s di-
agonal directions. The mirror is assumed to be perfectly aligned 
perpendicular to the laser beam direction. The estimates are 
computed by solving Eq. (1) with the nominal values of lx,np, 
ly,np, lx,np, ly,np. The estimates are “rotated” such that the esti-
mated Ey(x) becomes zero to avoid the redundancy. 
 In the case (a), the estimates contain a large estimation 
error, while the cases (b) and (c) have almost no error. This can 
be understood by observing that laser directions (i.e. diagonal 
directions) are not perpendicular to each other in case (a), while 
they “happen to be” approximately perpendicular in the cases 
(b) and (c). In case (a), estimation errors are as large as half of 
the given error, which are clearly not negligibly small. 

Misalignment of mirror directions 
Similarly, the direction of the flat mirror can be only aligned 
based on the motion of the machine to be measured, as illus-
trated in Fig. 4. For example, in the pp measurement, the ma-
chine is moved from B to C, and then the mirror direction is 
adjusted such that the measured diagonal distance becomes 
approximately equal at both ends of the mirror. This adjustment 
aligns the mirror ideally parallel to the diagonal direction, but it 
does not ensure the perpendicularity of laser and mirror direc-
tions. Since Eq.(1) assumes the perpendicularity of laser and 
mirror directions, it potentially results in estimation errors. 
Also, notice that if the mirror is perfectly aligned to the diago-
nal direction by the adjustment above, it simply makes 
Rx,pp=Ry,pp and Rx,np=Ry,np. It means that the step diagonal meas-
urement only provides diagonal distances, and thus the error 
identification based on Eq. (1) will obviously fail.  

A NEW FORMULATION OF STEP DIAGONAL 
MEASUREMENT 

It is not possible to identify all the volumetric errors from 
Rx,pp, Ry,pp, Rx,np and Ry,np when laser directions and mirror direc-
tions are not known. As a remedy, we propose a new formula-
tion of the step diagonal measurement to identify Ey(x) and 
Ex(y), under the assumption that linear error components, Ex(x) 
and Ey(y), are known by direct measurement.  
(1)  Identification of Ex(y) (under the assumption of Ey(x)=0) 

From the geometric relationship in pp measurement, when it 
is assumed that Ey(x)=0, Ex(y) can be estimated as follows: 

( ))())(()(ˆ 220 xEayEbRyE xyppx +−+−=  (3) 

where Rpp=Rx,pp+Ry,pp represents the measured diagonal distance 
in pp measurement. Unlike Eq. (1), Eq. (3) is not explicitly de-
pendent on laser beam directions, lpp and lnp, and thus the sensi-
tivity to the misalignment error of laser directions is far smaller 
than the conventional formulation. Also note that since Eq. (3) 
only uses diagonal distances, they are insensitive to alignment 
errors of mirror direction. 
(2)  Identification of Ey(x) 

In Fig. 6, α denotes the angle between the mirror and the la-
ser beam in the pp measurement, which is unknown. δ denotes 
the distance δ =0.5Rpp-Rx,pp. In the first block of step diagonal 
measurement where it can be assumed that Ey(x)=0 (notice that 
since Ey(x) can be defined only relatively, it is possible to as-
sume this in one block), we have: 

2cos
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where α2 denotes the angle of the mirror direction with respect 
to the vertical direction. Without loss of generality, we can as-
sume that α2=π/4. Under the assumption that there is no angular 
error in the machine’s motion, in the i-th block, Ey(x) can be 
estimated as follows: 

)(
sin
sin))((ˆ

2

i
a
aixE y δΔ⋅−=  (5) 

where Δδ(i) is the displacement in the measured δ =0.5Rpp(i)- 
Rx,pp(i) from its value in the first block, δ(1).  

Notice that this formulation is also insensitive to the laser 
direction. Furthermore, under the assumption that the mis-
alignment of the mirror direction is constant in all the blocks, 
the misalignment of the mirror direction does not affect the 
estimates of Ey(x). 
(3)  Modification of Ex(y) 

Based on the estimated Ey(x), Ex
0(y) estimated in Step (1) is 

modified by 
δδ sin)(ˆcos))(()(ˆ 0 xEyEbyE yyx ++=  (6) 

where ( )( ))()(ˆtan 1 xEaxE xy += −δ  

CASE STUDY 
The effectiveness of the proposed modified identification 

scheme is investigated experimentally by an application exam-
ple to a three-axis vertical-type high-precision milling machine. 
Its axes are all driven by a linear motor with a hydrostatic 
guideway. Its positioning resolution is 10 nm in all the axes. 
The stroke is X100mm×Y100mm. For the laser measurement, a 
laser doppler displacement meter, MCV-500 by Optodyne, Inc. 
is used. Laser beam directions are aligned by using a quad-
detector, LD42 by Optodyne, Inc. The step diagonal measure-
ments are done with the step size a=b=10 mm, over the entire 
range of 60 mm×60 mm (i.e. 6 blocks in X and Y directions).  

First, volumetric errors are estimated by the conventional 
formulation using step-diagonal measurements only. Figure 
7(a)(b) show estimated linear positioning errors in X and Y 
directions, Px(x) and Py(y), with respect to each reference point. 
Px(x) and Py(y) are given by the accumulation of Ex(x) and 
Ey(y). Their measured values, obtained by using the same laser 
interferometer aligned directly toward X- and Y-directions, are 
also shown. In each measurement, the same measurement is 
repeated by three times. Figure 7 plots the mean of estimated 
and measured errors, as well as their variation at each meas-
urement point by horizontal parallel lines. The mean position-
ing error measured by the laser interferometer is +1.14 μm over 
60 mm in the X direction, and +0.69 μm over 60 mm in the Y 

0.5RppY

X

Figure 6. Identification of Ey(x) 
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direction. The conventional identification scheme results in a 
large estimation error in both X and Y directions. The estimate 
of mean positioning error is -0.74 μm over 60 mm in the X 
direction, and +2.27 μm over 60 mm in the Y direction. 

Then, errors in the normal direction, Ey(x) and Ey(y), are 
estimated based on the proposed formulation, by using meas-
ured profiles in pp-, np-, X-, and Y-directions. Estimated and 
measured mean profiles of the accumulated positioning error 
in the normal direction, Py(x) and Px(y), are compared in Fig. 
8(a)(b). Here, measured profiles are obtained by using a cross 
grid encoder (KGM), KGM182 by Heidenhain. In Fig. 8, the 
mean profile of the estimates obtained from pp- and np-
measurements by using the conventional formulation are also 
plotted. Table 2 summarizes measured and estimated straight-
ness and squareness errors. Figure 8 and Table 2 show a good 
match between measured and estimated volumetric errors ob-
tained by step diagonal measurements. The mean of estimation 
error, i.e. the mean of difference between measured and esti-
mated errors obtained based on the proposed formulation, is 
<0.01 μm for Py(x), and 0.07 μm for Py(x). The maximum es-
timation error is 0.07 μm for Py(x), and 0.18 μm for Py(x).  

It should be noted that the conventional formulation gives a 
fairly good estimation accuracy for Py(x) or Px(y), similarly as 
the proposed formulation, although it results in a large estima-
tion error for linear errors, Px(x) or Py(y). This implies that the 
proposed formulation is essentially the simplification of the 
formulation (1), when the estimation of Ex(x) and Ey(y) is ig-
nored. 

CONCLUSION 
An inherent problem with the conventional formulation of 

the step diagonal measurement proposed by Wang (200) is that 
it is valid only when implicit assumptions related to the con-
figuration of laser and mirror setups are met, and that it is gen-
erally not possible to meet these conditions by the adjustment 
of the setup. The new formulation proposed in this paper sug-
gests that linear positioning errors must be independently 
measured, and then straightness (squareness) error components 
can be identified by using step-diagonal measurements even 
under the existence of setup errors. As an application example, 
the proposed scheme was applied to estimate two-dimensional 
volumetric errors on a high-precision milling machine of the 
positioning resolution of 10 nm. Experimental results indicated 
that the squareness error of X and Y axes (1.22 μm over 60mm 
measured by the KGM) was estimated with an estimation error 
of about 0.1 μm.  
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Table 2. Measured and estimated straightness errors (in X 
and Y) and squareness errors 
 Measured by 

KGM 
Estimated by 

proposed 
formulation 

Estimated by 
conventional 
formulation 

Straightness 
error in X 

0.05 μm 0.07 μm 0.06 μm 

Straightness 
error in Y 

0.11 μm 0.15 μm 0.08 μm 

Squareness 
error in XY 

-1.22 μm -1.32 μm -1.37 μm 

* All the errors are over the range of 60 mm. 

× 10-4

× 10-3

× 10-4

× 10-3


